yandex跨国科技公司最近推出了yafsdp,这是一种用于训练大型语言模型(llm)的开源方法。yafsdp是目前最有效的公开可用工具,用于增强gpu通
yandex跨国科技公司最近推出了yafsdp,这是一种用于训练大型语言模型(llm)的开源方法。yafsdp是目前最有效的公开可用工具,用于增强gpu通信并减少llm训练中的内存使用量,与fsdp相比,其训练速度提升最高可达26%,具体取决于架构和参数数量。通过使用yafsdp,减少llm的训练时间可以节省高达20%的gpu资源。
Yandex是全球人工智能社区的发展者,将YaFSDP开源提供给全球的LLM开发人员和人工智能爱好者,即是执行此承诺的其中一步。
"目前,我们正在积极尝试各种模型架构和参数大小,以扩展 YaFSDP 的多功能性,"Yandex 高级开发专家、YaFSDP 团队成员 Mikhail Khruschev 指出,"我们很高兴与全球 ML 社区分享我们在 LLM 训练方面的研发成果,希望能为全球研究人员和开发者获得更多的开源工具和更高的效率做出贡献。”
YaFSDP 案例
LLM(机器学习工程师和自主开发)的公司投入了大量的时间和GPU资源(相当于金钱)来训练这些模型。模型越大,其训练所需的时间和费用就越高。
Yandex 的 YaFSDP 优化了学习速度和性能,使全球的 AI 开发人员在训练模型时可以使用更少的计算能力和 GPU 资源。例如,在涉及具有 700 亿个参数之模型的预训练场景中,使用 YaFSDP 可以节省大约 150 个 GPU 的资源,这意味着每月可以节省大约 50 万美元到 150 万美元(取决于虚拟 GPU 提供商或平台)。
YaFSDP 通过消除 GPU 通信效率低下来提升效能,确保训练时只需必要的处理器内存,并使 GPU 交互不间断。
YaFSDP 的训练效率
YaFSDP+ 是 FSDP 的增强版,在 LLM 训练中最耗通信的阶段(如预训练、对齐和微调)中,其表现优于 FSDP 方法。YaFSDP 在 Llama 2 和 Llama 3 上展示的最终提速表明训练速度显著提高,在 Llama 2 70B 和 Llama 3 70B 上分别达到 21% 和 26%。
Mikhail Khruschev 表示:“YaFSDP 在 130 亿至 700 亿个参数的模型上表现出色,在 300 亿至 700 亿个参数范围内表现尤为惊人。目前,YaFSDP 最适合基于 LLaMA 架构的广泛使用之开源模型。”
YaFSDP 并不是 Yandex 的第一个开源工具。该公司之前曾分享过其他几款在 ML 社区中很受欢迎的工具,包括:
菜鸟下载发布此文仅为传递信息,不代表菜鸟下载认同其观点或证实其描述。
版权投诉请发邮件到 cn486com#outlook.com (把#改成@),我们会尽快处理
Copyright © 2019-2020 菜鸟下载(www.cn486.com).All Reserved | 备案号:湘ICP备2023003002号-8
本站资源均收集整理于互联网,其著作权归原作者所有,如有侵犯你的版权,请来信告知,我们将及时下架删除相应资源